

VIKRAM DEB (AUTONOMOUS) COLLEGE JEYPORE, KORAPUT, ODISHA

COURSE OF STUDIES
OF

BACHELOR DEGREE SCIENCE UNDER CBCS

Subject: **CHEMISTRY**

CURRICULUM FOR UNDERGRADUATE PROGRAMME

BACHELOR OF SCIENCE IN CHEMISTRY UNDER CBCS SYSTEM

(With effect from: 2021-2022 Admission batches)

Published by

VIKRAM DEB (AUTONOMOUS) COLLEGE JEYPORE, KORAPUT, ODISHA Website: www.vikramdebcollege.ac.in

<u>Learning Outcomes based Curriculum (LOC) for B.Sc. (Chemistry)</u>

Undergraduate Programme:

Preamble Over the past decades the higher education system of our country has undergone substantial structural and functional changes resulting in both quantitative and qualitative development of the beneficiaries. Such changes have gained momentum with the introduction of Choice Based Credit System (CBCS) which further expects learning outcome based curriculum in order to maximize the benefits of the newly designed curriculum. The learning outcome based curriculum in general and in Chemistry in particular will definitely help the teachers of the discipline to visualize the curriculum more specifically in terms of the learning outcomes expected from the students at the end of the instructional process. It is pertinent to mention here that the purpose of education is to develop an integrated personality of the individual and the educational system provides all knowledge and skills to the learner for this. The Learning outcome-based curriculum framework (LOCF) has been prepared to support designing uniform, advanced and effective Chemistry curriculum for undergraduate studies in Chemistry. The recommendations related to curriculum development is applicable for college/university education system which includes heads of schools/departments, practising teachers, parents, employers, academics from tertiary institutions, professionals from related fields or related bodies and representatives from university/college examinations authorities. The LOCF guides are based on the consultation documents on curriculum framework of University Grants Commission and MOOCs. The concerns, needs and interests of students, teachers as well as societal expectations have been taken into consideration while developing this framework structure. Each subject content aims to present a curriculum framework, specifying the curriculum aims, learning targets and objectives, and thus providing suggestions regarding curriculum planning, learning and teaching strategies, assessment and resources. In addition, the curriculum framework also provides examples of effective learning, teaching and assessment practices. A coherent understanding of the wholeundergraduate chemistry (major and pass) curriculum planning and the planning of student learning ability at subject levels can be established. Curriculum development is a collaborative and an on-going enhancement process; therefore, the same shall be updated and improved from time to time to meet new needs of students, teachers and society at large.

The template as developed has the provision of ensuring the integrated personality of the students in terms of providing opportunity for exposure to the students towards core courses, discipline specific courses, generic elective courses, ability enhancement courses and skill enhancement courses with special focus on technical, communication and subject specific skills through practical and other innovative transactional modes to develop their employability skills. The template of learning outcome based curriculum has categorically mentioned very well defined expected outcomes for the programme like core competency, communication skills, critical thinking, affective skills, problem-solving, analytical, reasoning, research-skills, teamwork, digital literacy, moral and ethical awareness, leadership readiness and so on along with very specific learning course outcomes at the starting of each course. Therefore, this template on Learning Outcomes based Curriculum Framework (LOCF) for B.Sc. with Chemistry/Chemistry Honours will definitely be a landmark in the field of outcome based curriculum construction.

Introduction Academics and research in India is a priority which depends upon the quality of education. Quality higher education includes innovations that can be useful for efficient governance of higher education institutions, systems and society at large. Thus, fundamental approach to learning outcome-based curriculum framework emphasizes upon demonstration of understanding, knowledge, skills, attitudes and values in particular programme of study. The LOCF based programme intended to follow flexibility and innovation in design of the programme, its assessment, and expect graduate attributes demonstrating the level of learning outcome. It is further expected to provide effective teaching - learning strategies including periodic review of the programme and its academic standard. The learning outcome-based curriculum framework for B.Sc. degree in Chemistry is intended to provide a broad framework and hence designed to address the needs of the students with chemistry as the core subject of study. The framework is expected to assist in the maintenance of the standard of chemistry degrees/programmes across the country and periodic programme review within a broad framework of agreed/expected graduate attributes, qualification descriptors, programme learning outcomes and course-level learning outcomes. The framework is intended to allow flexibility and innovation in programme design, syllabi development, teaching-learning process and quality assessment of students learning levels. This curriculum framework for the bachelor-level program in Chemistry is developed keeping in view of the student centric learning pedagogy, which is entirely outcome-oriented and curiosity-driven. To avoid rote-learning approach and foster imagination, the curriculum is more leaned towards self-discovery of concepts. The curriculum framework focuses on pragmatist approach whereby practical application of theoretical concepts is taught with substantial coverage of practical and field works. The platform aims at equipping the graduates with necessary skills for Chemistry-related careers, careers with general graduate-level aptitude and for higher education in Chemistry and allied subjects. Augmented in this framework are graduate attributes including critical thinking, basic psychology, scientific reasoning, moral ethical reasoning and so on, qualification descriptors that are specific outcomes pertinent to the discipline of chemistry, learning outcomes for the two programmes these frameworks have been developed, learning outcomes for individual courses, pedagogical methods and assessment methods. While designing these frameworks, emphasis is given on the objectively measurable teaching-learning outcomes to ensure employability of the graduates. In line with recent trends in education section, these frameworks foster implementation of modern pedagogical tools and concepts such as flip-class, hybrid learning, MOOCs and other e-learning platforms. In addition, the framework pragmatic to the core; it is designed such a way to enable the learners implementing the concepts to address the real world problems. A major emphasis of these frameworks is that the curriculum focuses on issues pertinent to India and also of the west; for example, green chemistry and biomaterials etc. Above all, these frameworks are holistic and aim to mould responsible Indian citizen to have reflective thinking, scientific temper, and digital literacy in order to acquire requisite skill to be self employed entrepreneurial.

<u>Aims:</u>

- To transform curriculum into outcome-oriented scenario
- To develop the curriculum for fostering discovery-learning
- To equip the students in solving the practical problems pertinent to India
- To adopt recent pedagogical trends in education including e-learning,
 flipped class, hybrid learning and MOOCs
- To mould responsible citizen for nation-building and transforming the country towards the future

Aims of Bachelor's degree programme in Chemistry.

The broad aims of bachelors degree programme in Chemistry are:

- (I) Broad and balance knowledge in chemistry in addition to understanding of key chemical concepts, principles and theories.
- (ii) To develop students' ability and skill to acquire expertise over solving both theoretical and applied chemistry problems.
- (iii). To provide knowledge and skill to the students' thus enabling them to undertake further studies in chemistry in related areas or multidisciplinary areas that can be helpful for self-employment/entrepreneurship.
- (iv). To provide an environment that ensures cognitive development of students in a holistic manner. A complete dialogue about chemistry, chemical equations and its significance is fostered in this framework, rather than mere theoretical aspects
- (v). To provide the latest subject matter, both theoretical as well as practical, such a way to foster their core competency and discovery learning. A chemistry graduate as envisioned in this framework would be sufficiently competent in the field to undertake further discipline-specific studies, as well as to begin domain-related employment.
- (vi).To mould a responsible citizen who is aware of most basic domain-independent knowledge, including critical thinking and communication.
- (vii).To enable the graduate prepare for national as well as international competitive examinations, especially UGC-CSIR NET and UPSC Civil Services Examination.

Course Learning Outcomes: The course learning outcomes are aligned with program learning outcomes but these are specific-to-specific courses offered in a program.

Teaching Learning Outcomes The learning outcomes based course curriculum framework of Chemistry is designed to persuade the subject specific knowledge as well as relevant understanding of the course. The academic and professional skills required for Chemistry-based professions and jobs are also offered by same course in an extraordinary way. In addition, the learning experiences gained from this course should be designed and implemented for cognitive development in every student. The practical associated with this course helps to develop an important aspect of the teaching-learning process. Various types of teaching and learning processes will need to be adopted to achieve the same. The important relevant teaching and learning processes involved in this course are;

- 1. Class Room Teaching
- 2. Seminars
- 3. Tutorials
- 4. Group discussions
- 5. Peer teaching and learning
- 6. Question preparation
 - Subjective type
 - Long answer
 - Short answer
 - Objective type
 - Multiple choice questions
- 7. Practicum, and project-based learning
- 8. Field-based learning
 - Substantial laboratory-based practical component and experiments
 - Open-ended project work,
 - Technology-enabled learning

The effective teaching strategies will also need to be adopted to develop problem-solving skills, higher-order skills of reasoning and analysis. The designed course also encourages fostering the social values/responsibility for maintaining and protecting the surrounding environment for improved living conditions. A learner centric and active participatory pedagogy shall be introduced in this framework.

GRADUATE PROGRAMME OUTCOMES (GPO)

GPO-1 Core competency: The chemistry graduates are expected to know the fundamental concepts of chemistry and applied chemistry. These fundamental concepts would reflect the latest understanding of the field, and therefore, are dynamic in nature and require frequent and time-bound revisions.

GPO-2: Communication skills: Chemistry graduates are expected to possess minimum standards of communication skills expected of a science graduate in the country. They are expected to read and understand documents with in-depth analyses and logical arguments. Graduates are expected to be well-versed in speaking and communicating their idea/finding/concepts to wider audience

GPO-3: Critical thinking: Chemistry graduates are expected to know basics of cognitive biases, mental models, logical fallacies, scientific methodology and constructing cogent scientific arguments.

- **GPO-4: Problem-solving**: Graduates are expected to be equipped with problem-solving philosophical approaches that are pertinent across the disciplines;
- **GPO-5:** Analytical reasoning: Graduates are expected to acquire formulate cogent arguments and spot logical flaws, inconsistencies, circular reasoning etc.
- **GPO-6: Teamwork**: Graduates are expected to be team players, with productive cooperation involving members from diverse socio-cultural backgrounds.
- **GPO-7: Moral and ethical awareness**: Graduates are expected to be responsible citizen of India and be aware of moral and ethical baseline of the country and the world. They are expected to define their core ethical virtues good enough to distinguish what construes as illegal and crime in Indian constitution. Emphasis be given on academic and research ethics, including fair Benefit Sharing, Plagiarism, Scientific Misconduct and so on.

PROGRAMME SPECIFIC OUTCOMES (PSO)

- **PSO-1** Understand basic concepts of Organic, Physical, Inorganic, Environmental and Analytical chemistry. **GPO-1,3, 4,**
- **PSO-2** Identify and estimate organic and inorganic compounds using classical and modern laboratory methods. **GPO-1,4,5**
- **PSO-3** Develop skills in synthesis and characterization of specified organic and inorganic compounds using documented laboratory procedures. **GPO-1,3,4,5**
- **PSO-4** Develop skills in evaluation, interpretation and synthesis of chemical information and data. **GPO-1,3,4,5**
- **PSO-5** Interpret and explain the limits and accuracy of experimental data in terms of significance and underlying theory. **GPO-1,2,3,4,5**
- **PSO-6** Develop skills in the safe-handling of chemical materials, taking into account of their physical and chemical properties including any specific hazards associated with their use. **GPO-5.6.7**
- **PSO-7** Use concepts, tools and techniques related to Mathematics and Physics to acquire required knowledge and its application in Chemistry **GPO-1,3,4**
- **PSO-8** Organize and deliver relevant applications of knowledge through effective written, verbal, graphical/virtual communications and interact productively with people from diverse backgrounds. **GPO-2,5,6**

COURSE STRUCTURE OF UG CHEMISTRY (HONOURS)

SEMESTER-I

Course Code	Course Name	Marks	Teaching Hours per week	
			Theory	Practical
AECC-I		100	4	0
CC-I	Inorganic Chemistry-I	100	4	2
CC-II	Physical Chemistry-I	100	4	2
GE-I	Generic Elective-1 (Paper I)	100	4	2

SEMESTER-II

Course Code	Course Name	Marks	Teaching Hours per week	
			Theory	Practical
AECC-II		100	4	0
CC-III	Organic Chemistry-I	100	4	2
CC-IV	Physical Chemistry-II	100	4	2
GE-II	Generic Elective-2(Paper I)	100	4	2

SEMESTER-III

Course Code	Course Name	Marks	Teaching Hours per week	
			Theory	Practical
SECC-I	Communicative English	100	4	0
CC-V	Inorganic Chemistry-II	100	4	2
CC-VI	Organic Chemistry-II	100	4	2
CC-VII	Physical Chemistry-III	100	4	2
GE-I	Generic Elective- I (Paper II)	100	4	2

SEMESTER-IV

Course			Teaching Hours per week	
Code	Course Name	Marks	Theory	Practical
SECC-II	Quantitative Aptitude & Logical Thinking	100	4	0
CC-VIII	Inorganic Chemistry-III	100	4	2
CC-IX	Organic Chemistry-III	100	4	2
CC-X	Physical Chemistry-IV	100	4	2
GE-II	Generic Elective- I (Paper II)	100	4	2

SEMESTER-V

Course			Teaching Hours per week		
Code	Course Name	Marks	Theory	Practical	
CC-XI	Organic Chemistry-IV	100	4	2	
CC-XII	Physical Chemistry-V	100	4	2	
DSE-I	Polymer Chemistry	100	4	2	
DSE-II	Green Chemistry	100	4	2	

SEMESTER-VI

Course			Teaching Hours per week	
Code	Course Name	Marks	Theory	Practical
CC-XIII	Inorganic Chemistry-IV	100	4	2
CC-XIV	Organic Chemistry-V	100	4	2
DSE-III	Industrial Chemicals and Environment	100	4	2
DSE-IV	Mini Project / Dissertation	100	4	2

CHEMISTRY (HONOURS):

A student to complete B.Sc. programme with chemistry Hons. has to pass the following courses.

Core Course – 14 papers (Core-I to Core-XIV)

Discipline Specific Elective – 4 papers (DSE –I to DSE –IV)

Generic Elective - 4 Papers (Two Papers of Physics and Two Papers of Mathematics)

Ability Enhancement Compulsory Course-I (AECC –I)

Ability Enhancement Compulsory Course-II (AECC –II)

Skill Enhancement Compulsory Course-I (SECC -I)

Skill Enhancement Compulsory Course-II (SECC –II)

Mark Distribution

Course	Mid Sem	End Sem	Practical	Total
Core Course I to XIV and				
DSE-I, DSE-II & DSE-III	15	60	25	100
Course	Dissertation	Presentation	Viva-Voce	Total
DSE-IV (Project)	60	20	20	100
Course		Mid Sem	End Sem	Total
AECC-I ,AECC-II ,SECC-I & SECC-II		20	80	100

CORE PAPER-1

INORGANIC CHEMISTRY-I

Course Learning Outcome:

- To study different models of atom and to understand quantum mechanical approach to atom.
- To understand periodic properties of elements with reference to modern periodic table.
- To explain different types of bond formation (ionic and covalent). To predict geometry of covalent molecule on the basis of hybridisation and VSEPR theory.
- To understand the nature of bonding in metals
- To develop skills in titration and theory behind Acid-Base and Redox titration.

Unit-I

Atomic structure:

Bohr's theory, its limitations and atomic spectrum of hydrogen atom, Sommerfeld's modification. Wave mechanics: de Broglie equation, Heisenberg's Uncertainty Principle (time independent) and its significance, Derivation of Schrödinger's wave equation (for hydrogen atom) in Cartesian coordinate, significance of ψ and ψ^2 . Normalized and orthogonal wave functions. Sign of wave functions; Setting of Schrödinger's equation in polar coordinates (derivation not required), radial and angular wave functions for hydrogen atom. Radial and angular distribution curves; Shapes of s, p, d and f orbitals; Quantum numbers and their significance. Pauli's Exclusion principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations.

Unit-II

Periodicity of elements

Periodicity of Elements: s, p, d, f block elements, the long form of periodic table. Detailed discussion of the following properties of the elements, with reference to s & p-blocks. (a) Effective nuclear charge, shielding or screening effect, Slater rules, variation of effective nuclear charge in periodic table. (b) Atomic radii (van der Waals) (c) Ionic and crystal radii. (d) Covalentradii (octahedral and tetrahedral) (e) Ionization enthalpy, Successive ionization enthalpies and factors affecting ionization energy. Applications of ionization enthalpy. (f) Electron gain enthalpy, trends of electron gain enthalpy. (g) Electronegativity, Pauling's/ Mulliken's electronegativity scales. Variation of electronegativity with bond order, partial charge, hybridization. Sanderson's electron density ratio.

Unit-III

Chemical bonding-I

lonic bond: General characteristics, types of ions, size effects, radius ratio rule and its limitations. Packing of ions in crystals. Born-Landé equation with derivation. Madelung constant, Born-Haber cycle and its application, Solvation energy. (ii) Covalent bond: Valence Bond theory (Heitler-London approach). Hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements, equivalent and non-equivalent hybrid orbitals, Resonance and resonance energy.

Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N₂, O₂, C₂, B₂, F₂, CO, NO, and their ions (CO⁺, NO⁺, NO⁻).

Unit-IV

Chemical bonding-II

VSEPR theory, shapes of simple molecules and ions containing lone and bond pairs of electrons, multiple bonding (σ and π bond approach) and bond lengths. Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Ionic character in covalent compounds: Bond moment and dipole moment. Percentage ionic character from dipole moment and electronegativity difference.

Metallic Bond: Qualitative idea of valence bond and band theories. Semiconductors and insulators. (ii) Weak Chemical Forces: van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points, solubility energetics of dissolution process.

Oxidation-reduction: Redox equations, standard electrode potential and its applications to inorganic reactions. Principles involved in some volumetric analyses (iron and copper).

Recommended Text Books:

- 1. Lee J. D., Concise Inorganic Chemistry Wiley India, 5th Edn. 2008.
- 2. Huheey J. E., Keiter E. A. and Keiter R. L., Inorganic Chemistry Principles of structure and reactivity, , Pearson Education, 4th Ed. 2002.
- 3. Puri, Sharma, Kalia, Principles of Inorganic Chemistry, Vishal Pub. Co., 33rd ed., 2017
- 4. Selected Topic in Inorganic Chemistry, S. Chand, New Delhi, 17th Ed., 2010.
- 5. R.D.Madan, Advanced Inorganic Chemistry ,S.Chand New Delhi

Reference books

- Das Asim K., Fundamentals of Inorganic Chemistry, Vol. I, CBS Publications, 2nd Ed. 2010.
- 7. Pradeep's Inorganic Chemistry, Vol. I & II, Universal Book seller, 14th Ed. 2017.

CORE PAPER I LAB

(A) Acid-Base Titrations

- i. Estimation of carbonate and hydroxide present together in mixture.
- ii. Estimation of carbonate and bicarbonate present together in a mixture.
- iii. Estimation of free alkali present in different soaps/detergents

(B) Oxidation-Reduction Titrimetry

- i. Standardization of KMnO₄ with standard sodium oxalate and estimation of Fe(II) using standardized KMnO₄ solution.
- Estimation of percentage of oxalic acid and sodium oxalate in a given mixture.
- iii. Estimation of Fe(II) and Fe(III) in a mixture by standard K₂Cr₂O₇ solution.

Reference text:

- 1. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.
- 2. Gulati Shikha , Sharma Gulati JL and ManochaShagun, Practical Inorganic Chemistry, 1stEdn., CBS Publishers & Distributors Pvt Ltd., (2017).

CORE PAPER II

PHYSICAL CHEMISTRY- I

Course Learning Outcome:

- To understand the properties of gaseous state and liquid state of matter on the basis of Kinetic Theory and to study structure of different types of solid.
- To study ionic equilibrium with reference to salt hydrolysis, buffer solution and theories of acid and base, and theories of indicator.
- To develop skills for determination of viscosity and surface tension of liquid by using simple equipments.

Unit-I

Gaseous state-l

Kinetic molecular model of a gas: postulates and derivation of the kinetic gas equation; collision frequency; collision diameter; mean free path and viscosity of gases, including their temperature and pressure dependence, relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure. Maxwell distribution and its use in evaluating molecular velocities (average, root mean square and most probable) and average kinetic energy, law of equipartition of energy, degrees of freedom and molecular basis of heat capacities.

Behaviour of real gases: Deviations from ideal gas behaviour, compressibility factor, Z, and its variation with pressure for different gases. Causes of deviation from ideal behaviour. van der Waal's equation of state, its derivation and application in explaining real gas behaviour. Isotherms of real gases and their comparison with van der Waals isotherms, continuity of states, critical state, relation between critical constants and van der Waals constants, law of corresponding states.

Unit-II

Liquid state

Qualitative treatment of the structure of the liquid state; physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity, and their determination. Effect of addition of various solutes on surface tension and viscosity. Explanation of cleansing action of detergents. Temperature variation of viscosity of liquids and comparison with that of gases. Qualitative discussion of structure of water.

Ionic equilibria- I

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono- and diprotic acids.

Unit- III: Solid state

Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method. Analyses of powder diffraction patterns of NaCl, CsCl and KCl. Defects in crystals (stoichiometric and non- stoichiometric). Glasses and liquid crystals.

Unit-IV

Ionic equilibria - II

Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions; derivation of Henderson equation and its applications; buffer capacity, buffer range, buffer action and applications of buffers in analytical chemistry and biochemical processes in the human body. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. Qualitative treatment of acid – base titration curves (calculation of pH at various stages). Theory of acid–base indicators; selection of indicators and their limitations. Multistage equilibria in polyelectrolyte systems; hydrolysis and hydrolysis constants.

Recommended Text Books:

- 1. Atkins P. W. & Paula, J. de, Elements of Physical Chemistry, Oxford University Press, 6th Ed., (2006).
- 2. Puri, Sharma &Pathania, Principles of Physical Chemistry, Vishal Publishing Co, 47th Edn., 2017.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017
- 4. Castellan G. W. Physical Chemistry 4thEdn. Narosa (2004).

Reference Books:

- 1. Kheterpal S.C., Pradeep's Physical Chemistry, Vol. I & II, Pradeep Publications
- 2. Mortimer R. G., Physical Chemistry, Elsevier (Academic Press), 3rd Ed (2008).
- 3. Ball D. W. Physical Chemistry Thomson Press, India (2007).
- 4. Engel T. & Reid P., Physical Chemistry, 3rd Ed. Pearson (2013)

CORE PAPER II LAB

Surface tension measurements.

- a. Determine the surface tension by (i) drop number (ii) drop weight method.
- b. Study the variation of surface tension of detergent solutions with concentration.

Viscosity measurement using Ostwald's viscometer.

- a. Determination of viscosity of aqueous solutions of (i) polymer (ii) ethanol and (iii) sugar at room temperature.
- b. Study the variation of viscosity of sucrose solution with the concentration of solute.

Ionic equilibria

a. Determination of solubility product of Pbl₂ by titrimetric method.

Reference Books

- 1. Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi (2011).
- 2. Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical Chemistry, 8th Ed.; McGraw-Hill, New York (2003).
- 3. Viswanathan, B., Raghavan, P.S. Practical Physical Chemistry, Viva Books (2009).

CORE PAPER - III

ORGANIC CHEMISTRY I

Course Learning Outcome:

- To understand the basics of organic chemistry and stereochemistry with reference to conformational and configurational isomerism.
- To understand the chemistry (preparation and properties) of alkanes, alkenes, alkynes and cycloalkanes.
- To understand aromaticity and peculiar aromatic properties of related compounds.
- To develop the skills required for separation and purification of organic compounds.

Unit -I:

Basics of organic chemistry

Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects, hyperconjugation and their applications; Dipole moment; Organic acids and bases; their relative strength. Homolytic and heterolytic fission with suitable examples. Curly arrow rules; Electrophiles and Nucleophiles; Nucleophilicity and basicity; Types, shape and relative stability of carbocations, carbanions, free radicals and carbenes.

Introduction to types of organic reactions and their mechanism: Addition, Elimination and Substitution reactions.

Carbon-carbon sigma bonds

Chemistry of alkanes: Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative reactivity and selectivity.

Unit - II:

Stereochemistry

Fischer Projection, Newmann and Sawhorse Projection formulae; Geometrical isomerism: cis- trans and, syn-anti isomerism E/Z notations with C.I.P rules.

Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with one and two chiral-centres, Distereoisomers, mesostructures, Racemic mixture and resolution, inversion. Relative and absolute configuration: D/L and R/S designations.

Unit – III:

Chemistry of aliphatic hydrocarbons

Carbon-Carbon pi bonds:

Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations.Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/ Anti Markownikoff addition), mechanism of oxymercuration-demercuration, hydroboration oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation (oxidation). 1,2- and 1,4-addition reactions in conjugated dienes and, Diels-Alder reaction; Reactions of alkynes: Acidity, Electrophilic and Nucleophilic additions. Hydration to form carbonyl compounds, Alkylation of terminal alkynes.

Cycloalkanes and Conformational Analysis

Types of cycloalkanes and their relative stability, Baeyer strain theory, Conformational analysis of alkanes (ethane and n-butane): Relative stability with energy diagrams. Energy diagrams of cyclohexane: Chair, Boat and Twist boat forms.

Unit - IV:

Aromatic hydrocarbons

Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism. Directing effects of the groups

Recommended Text Books:

- 1. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Bhal and Bhal, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.
- 3. Kalsi, P. S., Stereochemistry Conformation and Mechanism; 8thEdn, New Age International, 2015.

Reference Books:

- Graham Solomons T. W., Fryhle, Craig B., Snyder Scott A, Organic Chemistry, Wiley Student Ed, 11th Edition (2013)
- 2. Jonathan Clayden, Nick Greeves, Stuart Warren, Organic Chemistry, 2nd Edition, Oxford Publisher, 2014.
- 3. Dhawan, S.N., Pradeep's Organic Chemistry, (Vol. I and II), Pradeep Publications

CORE PAPER III LAB

Students are required to learn the followings:

1. Checking the calibration of the thermometer

- 2. Determination of melting point, effect of impurities on the melting point mixed melting point of two unknown organic compounds
- 3. Determination of boiling point of liquid compounds [boiling point lower than and more than 100°C (up to 160°C) by distillation and capillary method, respectively](e.g., ethanol, cyclohexane, ethyl methyl ketone, cyclohexanone, acetylacetone, anisole, crotonaldehyde, mesityl oxide etc.).

List of experiments

- 1. Functional group tests for alcohols, phenols, carbonyl and carboxylic acid groups and identification of unknown organic compounds of CHO system (without element detection).
- 2. Separation and purification of any one component of following binary solid mixture based on the solubility in common laboratory reagents like water (cold, hot), dil. HCl, dil. NaOH, dil. NaHCO₃, etc. and determination of melting point. Benzoic acid/p-Toluidine; p-Nitrobenzoic acid/p-Aminobenzoic acid; p-Nitrotolune/p-Anisidine etc.
- 3. Chromatography
 - Separation of a mixture of two amino acids by ascending and horizontal paper chromatography
 - Separation of a mixture of two sugars by ascending paper chromatography OR
 - Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC)

Reference Books

- 1. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- 2. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012)

CORE PAPER IV

PHYSICAL CHEMISTRY II

Course Learning Outcome:

- To understand the concepts of thermodynamics with reference to Enthalpy, Entropy, Free energy, Chemical potential.
- To understand the concept of chemical equilibrium and it's conditions and characteristics.
- To understand the theories relating to dilute solution and colligative properties.
- To develop skills for use of equipments like pH meter and conductivity meter and to perform thermal experiments using calorimeter.

Unit-I:

Chemical thermodynamics

Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics.

First law: Concept of heat, q, work, w, internal energy, U, and statement of first law; enthalpy, H, relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions.

Thermochemistry: Heats of reactions: standard states; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data, effect of temperature (Kirchhoff's equations) and pressure on enthalpy of reactions.

Unit-II

Carnot cycle, efficiency of heat engine, Carnot theorem

Second Law: Concept of entropy; thermodynamic scale of temperature, statement of the second law of thermodynamics; molecular and statistical interpretation of entropy. Calculation of entropy change for reversible and irreversible processes.

Third Law: Statement of third law, concept of residual entropy, calculation of absolute entropy of molecules.

Free Energy Functions: Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; Free energy change and spontaneity. Relation between Joule-Thomson coefficient and other thermodynamic parameters, inversion temperature, Gibbs-Helmholtz equation, Maxwell relations, thermodynamic equation of state.

Unit-III

Systems of variable composition

Partial molar quantities, dependence of thermodynamic parameters on composition; Gibbs Duhem equation, chemical potential of ideal mixtures, change in thermodynamic functions in mixing of ideal gases.

Chemical equilibrium

Criteria of thermodynamic equilibrium, degree of advancement of reaction, chemical equilibria in ideal gases, concept of fugacity. Thermodynamic derivation of relation between Gibbs free energy of reaction and reaction quotient (vant Hoff's reaction). Equilibrium constants and their quantitative dependence on temperature, pressure and concentration. Free energy of mixing and spontaneity; thermodynamic derivation of relations between the various equilibrium constants K_p , K_c and K_x . Le Chatelier principle (quantitative treatment) and its applications.

Unit-IV

Solutions and Colligative Properties

Dilute solutions; lowering of vapour pressure, Raoult's and Henry's Laws and their applications. Thermodynamic derivation using chemical potential to derive relations between the four colligative properties: (i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure and amount of solute. Applications in calculating molar masses of normal, dissociated and associated solutes in solution.

Recommended Text Books:

- 1. Atkins P. W. & Paula, J. de, Elements of Physical Chemistry, Oxford University Press, 6th Ed., (2006).
- 2. Principles of Physical Chemistry, Puri, Sharma &Pathania, Vishal Publishing Co, 47th Edn., 2017.
- 3. Text Book of Physical Chemistry, K. L. Kapoor, Mac Grow Hill, 3rd Edn. 2017
- 4. Castellan G. W. Physical Chemistry 4th Ed. Narosa (2004).

Reference Books:

- 1. McQuarrie, D. A. & Simon, J. D. Molecular Thermodynamics Viva Books Pvt. Ltd.: New Delhi (2004).
- 2. Kheterpal S.C., Pradeep's Physical Chemistry, Vol. I & II, Pradeep Publications.

CORE PAPER IV LAB

THERMOCHEMISTRY / PH -METRY

- a) Determination of heat capacity of a calorimeter for different volumes using change of enthalpy data of a known system (method of back calculation of heat capacity of calorimeter from known enthalpy of solution or enthalpy of neutralization).
- b) Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- c) Calculation of the enthalpy of ionization of ethanoic acid.
- d) Determination of heat capacity of the calorimeter and integral enthalpy (endothermic and exothermic) solution of salts.
- e) Determination of basicity/proticity of a polyprotic acid by the thermochemical method in terms of the changes of temperatures observed in the graph of temperature versus time for different additions of a base. Also calculate the enthalpy of neutralization of the first step.
- f) Determination of enthalpy of hydration of copper sulphate.
- g) Determination of heat of solution (ΔH) of oxalic acid/benzoic acid from solubility measurement.
- h). Study the effect on pH of addition of HCl/NaOH to solutions of acetic acid, sodium acetate and their mixtures.
- i). Preparation of buffer solutions of different pH (i) Sodium acetate-acetic acid (ii) Ammonium chloride-ammonium hydroxide
 - j) pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base.
 - k) Determination of dissociation constant of a weak acid.

Reference Books

- 1. Khosla, B. D.; Garg, V. C. & Gulati, A., Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi (2011).
- 2. Athawale, V. D. & Mathur, P. Experimental Physical Chemistry, New Age International: New Delhi (2001).
- 3. Viswanathan, B., Raghavan, P.S. Practical Physical Chemistry, Viva Books (2009)

CORE PAPER V

INORGANIC CHEMISTRY-II

Course Learning Outcome:

- To understand the general principles of metallurgy and theories of acid and base.
- To understand chemistry of s and p block elements including noble gases.
- To understand preparation and properties and uses of inorganic polymers.
- To develop skills for preparation of inorganic compounds and their characterization.

UNIT-I

General Principles of Metallurgy

Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon and carbon monoxide as reducing agent. Electrolytic Reduction, Hydrometallurgy. Methods of purification of metals: Electrolytic process, Parting process, van Arkel-de Boer process and Mond's process, Zone refining.

Acids and Bases

Brönsted-Lowry concept of acid-base reactions, solvated proton, relative strength of acids, types of acid-base reactions, Lewis acid-base concept, Classification of Lewis acids, Hard and Soft Acids and Bases (HSAB) Application of HSAB principle.

UNIT-II

Chemistry of s and p Block Elements - I

Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complex formation tendency of *s* and *p* block elements.

Hydrides and their classification ionic, covalent and interstitial. Basic beryllium acetate and nitrate.

UNIT-III

Chemistry of s and p Block Elements - II

Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Boric acid and borates, boron nitrides, borohydrides (diborane) carboranes and graphitic compounds, silanes. Oxides and oxoacids of nitrogen, Phosphorus and chlorine. Peroxo acids of sulphur, interhalogen compounds, polyhalide ions, pseudohalogens and basic properties of halogens.

UNIT-IV

Noble Gases

Occurrence and uses, rationalization of inertness of noble gases, clathrates; preparation and properties of XeF₂, XeF₄ and XeF₆; Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF₂). Molecular shapes of noble gas compounds (VSEPR theory).

Inorganic Polymers:

Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. Borazines, silicates and phosphazenes, and polysulphates.

Recommended Text Books:

- 1. Lee J. D., Concise Inorganic Chemistry Wiley India, 5thEdn., 2008.
- 2. Huheey J. E., Keiter E. A. and Keiter R. L., Inorganic Chemistry Principles of structure and reactivity, , Pearson Education, 4th Ed. 2002.
- 3. Puri, Sharma, Kalia, Principles of Inorganic Chemistry, Vishal Pub. Co., 33rd ed., 2017.

Reference books

- Das Asim K., Fundamentals of Inorganic Chemistry, Vol. I, CBS Publications, 2nd Ed. 2010.
- 2. Pradeep's Inorganic Chemistry, Vol. I & II, Universal Book seller, 14th Ed. 2017.

CORE PAPER V LAB

lodometric / lodimetric titrations

- (i) Standardization of sodium thiosulphate solution by standard of $K_2Cr_2O_7$ solution.
- (ii) Estimation of Cu(II) using standard sodium thiosulphate solution (Iodimetrically).
- (iii) Estimation of available chlorine in bleaching powder iodometrically.

Inorganic preparations

- (i) Cuprous oxide (Cu₂O)
- (ii) Cuprous chloride, Cu₂Cl₂
- (iii) Manganese(III) phosphate, MnPO₄.H₂O
- (iv) Aluminium potassium sulphate K₂SO₄,Al₂(SO₄)₂.24H₂O (Potash alum).
- (v) Lead chromate (PbCrO₄)

Reference Books:

- 1. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis, 6th Ed., Pearson, 2009.
- 2. Ahluwalia, V.K., Dhingra, S. and Gulati A, College Practical Chemistry, University Press (2005).
- 3. Gulati Shikha , Sharma Gulati JL and ManochaShagun, Practical Inorganic Chemistry, 1stEdn., CBS Publishers & Distributors Pvt. Ltd., (2017).

CORE PAPER VI

ORGANIC CHEMISTRY-II

Course Learning Outcome:

- To understand preparation and properties of organic compounds like Alcohols, Phenols, Ethers, Epoxies, Aldehydes, Ketones and Carboxylic acids.
- To understand the preparation properties and synthetic application of active methylene compounds.
- To understand the chemistry Sulphur containing organic compounds.
- To develop the skills for preparation of different organic molecules and their characterization.

UNIT-I

Chemistry of Halogenated Hydrocarbons

Alkyl halides: Methods of preparation, nucleophilic substitution reactions - S_N1 , S_N2 and S_Ni mechanisms with stereochemical aspects and effect of solvent etc.; nucleophilic substitution vs. elimination.

Aryl halides: Preparation, including preparation from diazonium salts, nucleophilic aromaticsubstitution; SNAr, Benzyne mechanism.

Relative reactivity of alkyl, allyl/benzyl, vinyl and aryl halides towards nucleophilic substitution reactions.

Organometallic compounds of Mg and Li – Use in synthesis of organic compounds.

UNIT-II

Alcohols, Phenols, Ethers and Epoxides

Alcohols: preparation, properties and relative reactivity of 1°, 2°, 3° alcohols, Bouvaelt-BlancReduction; Preparation and properties of glycols: Oxidation by periodic acid and lead tetraacetate, Pinacol-Pinacolone rearrangement;

Phenols: Preparation and properties; Acidity and factors effecting it, Ring substitutionreactions, Reimer–Tiemann and Kolbe's–Schmidt Reactions, Fries and Claisen rearrangements with mechanism;

Ethers and Epoxies: Preparation and reactions with acids. Reactions of epoxides with alcohols, ammonia derivatives and LiAlH₄

UNIT-III

Carbonyl Compounds

Structure, reactivity and preparation:

Nucleophilic additions, Nucleophilic addition-elimination reactions with ammonia derivatives with mechanism; Mechanisms of Aldol and Benzoin condensation, Knoevenagel condensation, Perkin, Cannizzaro and Wittig reaction, Beckmann

rearrangements,α haloform reaction and Baeyer Villiger oxidation, - substitution reactions, oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH₄, NaBH₄, MPV.; Addition reactions of unsaturated carbonyl compounds: Michael addition.

Active methylene compounds: Keto-enol tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate.

UNIT-IV

Carboxylic Acids and their Derivatives

Preparation, physical properties and reactions of monocarboxylic acids: Typical reactions of dicarboxylic acids, hydroxy acids and unsaturated acids: succinic, lactic, malic, tartaric, citric, maleic and fumaric acids;

Preparation and reactions of acid chlorides, anhydrides, esters and amides; Comparative study of nucleophilic sustitution at acyl group -Mechanism of acidic and alkaline hydrolysis of esters, Claisen condensation, Dieckmann and Reformatsky reactions, Hofmann-bromamide degradation and Curtius rearrangement.

Sulphur containing compounds: Preparation and reactions of thiols and thioethers.

Recommended Text Books:

- 1. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Bhal and Bhal, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.
- 3. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009..

Reference Books:

- 1. Graham Solomons T. W., Fryhle, Craig B., Snyder Scott A, Organic Chemistry, Wiley Student Ed, 11th Edition (2013)
- 2. Jonathan Clayden, Nick Greeves, Stuart Warren, Organic Chemistry, 2nd Edition, Oxford Publisher, 2014.
- 3. Dhawan, S.N., Pradeep's Organic Chemistry, (Vol. I and II), Pradeep Publications

CORE PAPER VI LAB

Organic preparations:

- i. Acetylation of one of the following compounds: amines (aniline, *o*-, *m*-, *p*-toluidines and *o*-, *m*-, *p*-anisidine) and phenols (β-naphthol, vanillin, salicylic acid) by any one method:
 - a. Using conventional method.

- b. Using green approach
- ii. Benzolyation of one of the following amines (aniline, o-, m-, p- toluidines and o-, m-, p-anisidine) and one of the following phenols (β-naphthol, resorcinol, p-cresol) by Schotten-Baumann reaction.
- iii. Bromination of any one of the following:
 - a. Acetanilide by conventional methods
 - b. Acetanilide using green approach (Bromate-bromide method)
- iv. Nitration of any one of the following:
 - a. Acetanilide/nitrobenzene by conventional method
 - b. Salicylic acid by green approach (using ceric ammonium nitrate).

The above derivatives should be prepared using 0.5-1g of the organic compound. Calculate percentage yield, based upon isolated yield (crude) and theoretical yield. Purification of the crude product by recrystallisation from water/alcohol, or sublimation, whichever is applicable and determination of melting point.

Reference Books

- 1. Vogel, A. I. Elementary Practical Organic Chemistry, Part 1: Small scale Preparations, Pearson (2011)
- 2. Mann, F.G. & Saunders, B.C. *Practical Organic Chemistry,* Pearson Education (2009)
- 3. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. *Practical OrganicChemistry*, 5th Ed., Pearson (2012)
- 4. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry:Preparation and Quantitative Analysis, University Press (2000).
- 5. Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry: QualitativeAnalysis, University Press (2000).

CORE PAPER VII

PHYSICAL CHEMISTRY-III

Course Learning Outcome:

- To understand concepts like phase, component, degrees of freedom and phase rule. Application of phase rule to different types of system.
- To understand Nernst distribution law and it's applications.
- To understand speed of reaction and factors influencing speed of reaction and mechanism of reaction with reference to catalysis.
- To understand theories of reaction rate.
- To develop the skills to study kinetics of first order reaction and determination of partition coefficient.

UNIT-I

Phase Equilibria-I

Concept of phases, components and degrees of freedom, derivation of Gibbs Phase Rule for nonreactive and reactive systems; Clausius-Clapeyron equation and its applications to solid-liquid, liquid-vapour and solid-vapour equilibria, phase diagram for one component systems, with applications (H₂O and sulphur system).

Phase diagrams for systems of solid-liquid equilibria involving eutectic (Pb-Ag system, desilverisation of lead), congruent (ferric chloride-water) and incongruent (sodium sulphate-water) melting points, completely miscible solid solutions (intermediate, medium, maximum freezing points).

UNIT-II

Phase Equilibria-II

Three component systems, water-chloroform-acetic acid system, triangular plots.

Binary solutions: Gibbs-Duhem-Margules equation, its derivation and applications to fractional Distillation of binary miscible liquids (ideal and non-ideal), azeotropes, partial miscibility of liquids, CST, miscible pairs, steam distillation.

Nernst distribution law: its derivation and applications.

UNIT-III

Chemical Kinetics

Order and molecularity of a reaction, rate laws in terms of the advancement of a reaction, differential and integrated form of rate expressions up to second order reactions, experimental methods of the determination of orders.

Kinetics of complex reactions (integrated rate expressions up to first order only): (i) Opposing reactions (ii) parallel reactions (iii) consecutive reactions and their differential rate equations (steady-state approximation in reaction mechanisms) (iv) chain reactions. Temperature dependence of reaction rates; Arrhenius equation; activation energy. Collision theory of reaction rates, qualitative treatment of the theory of absolute reaction rates.

UNIT-IV

Catalysis

Types of catalyst, specificity and selectivity, mechanisms of catalyzed reactions at solid surfaces; effect of particle size and efficiency of nanoparticles as catalysts. Enzyme catalysis, Michaelis-Menten mechanism, acid-base catalysis.

Surface chemistry:

Physical adsorption, chemisorption, adsorption isotherms (Langmuir, Freundlich and Gibb's isotherms), nature of adsorbed state.

Recommended Text Books:

- 1. Atkins P. W. & Paula, J. de, Elements of Physical Chemistry, Oxford University Press, 6th Ed., (2006).
- 2. Puri, Sharma &Pathania, Principles of Physical Chemistry, Vishal Publishing Co, 47th Edn., 2017.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017
- 4. Castellan G. W. Physical Chemistry 4thEdn. Narosa (2004).

Reference Books:

- 1. Kheterpal S.C., Pradeep's Physical Chemistry, Vol. I & II, Pradeep Publications
- 2. Levine, I. N. *Physical Chemistry* 6thEd., Tata McGraw-Hill (2011).
- 3. Ball D. W. Physical Chemistry Thomson Press, India (2007).
- 4. Engel T. & Reid P., Physical Chemistry 3rd Ed. Pearson (2013)

CORE PAPER VII LAB

- 1. Determination of distribution coefficients of:
 - (a) Iodine between water and carbon tetrachloride.
 - (b) Acetic/ benzoic acid between water and cyclohexane.
- 2. Study the equilibrium of at least one of the following reactions by the distribution method:
 - $I_2(aq) + I^- \rightarrow I_3(aq)$
 - $Cu^{2+}(aq) + nNH_3 \rightarrow Cu(NH_3)_n$
- 3. Study the kinetics of the following reactions.
 - (i) Integrated rate method:
 - a) Acid hydrolysis of methyl acetate with hydrochloric acid.
 - b) Saponification of ethyl acetate.
 - (ii) Compare the strengths of HCl and H₂SO₄ by studying kinetics of hydrolysis of methyl acetate.
- 4. Verify the Freundlich and Langmuir isotherms for adsorption of acetic acid on activated charcoal.

Reference Books:

- Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry,
 R. Chand & Co.: New Delhi (2011).
- 2. Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. *Experiments in Physical Chemistry8*th *Ed.*; McGraw-Hill: New York (2003).
- 3. Halpern, A. M. &McBane, G. C. Experimental Physical Chemistry 3rdEd.; W.H. Freeman & Co.: New York (2003).

CORE PAPER VIII

INORGANIC CHEMISTRY-III Course Learning Outcome:

- To understand the properties of transition and inner transition elements.
- To understand nature of bonding in coordinate compounds (VBT and CFT)
- To understand role of metal ions in biological systems Na/K pump and toxicity of metals.
- To develop the skills for preparation and characterization of some complex compounds.
- To develop the skills of complex- metric titration.

UNIT-I

Coordination Chemistry

Werner's theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding. IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, Labile and inert complexes.

Crystal field theory, measurement of CFSE weak and strong fields, pairing energies, factors affecting the magnitude of 10 Dq in octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry, Jahn-Teller theorem, square planar geometry. Qualitative aspect of ligand field and MO Theory.

UNIT-II

Transition Elements-I

General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties, and ability to form complexes. Stability of various oxidation states and e.m.f. (Latimer &Bsworth diagrams). Difference between the first, second and third transition series.

UNIT-III

Transition Elements-II

Chemistry of Ti, V, Cr Mn, Fe and Co in various oxidation states (excluding their metallurgy).

Lanthanoids and Actinoids

Electronic configuration, oxidation states, colour, spectral and magnetic properties, lanthanide contraction, separation of lanthanides (ion-exchange method only). General features of actinoids, separation of Np, Pm, Am from U.

UNIT-IV

Bioinorganic Chemistry

Metal ions present in biological systems, classification of elements according to their action in biological system. Na/K-pump, carbonic anhydrase and carboxypeptidase. Excess and deficiency of some trace metals. Toxicity of metal ions (Hg, Pb, Cd and As), reasons for toxicity, Use of chelating agents in medicine.

Iron and its application in bio-systems, Haemoglobin and myoglobin.

Recommended Text Books:

- 1. Lee J. D., Concise Inorganic Chemistry, Wiley India, 5th Edn., 2008.
- 2. Huheey J. E., Keiter E. A. and Keiter R. L., Inorganic Chemistry Principles of structure and reactivity, Pearson Education, 4th Ed. 2002.
- 3. Puri, Sharma, Kalia, Principles of Inorganic Chemistry, Vishal Pub. Co., 33rd ed., 2017.
- 4. Shriver D. E., Atkins P. W., InorganicChemistry, Oxford University Press, 5thEdn..

Reference books

- 1. Das Asim K., Fundamentals of Inorganic Chemistry, Vol. II, CBS Publications, 2nd Ed. 2010.
- 2. Bioinorganic Chemistry, Asim Kumar Das, Books & Allied (P) Ltd. 1st ed. 2015.
- 3. Selected Topic in Inorganic Chemistry, Mallick, Madan and Tuli, S. Chand Publisher. 17th Ed. 2010.
- 4. Pradeep's Inorganic Chemistry, Vol. I & II, Universal Book seller, 14th Ed. 2017.

CORE PAPER VIII LAB

Inorganic preparations

Preparation of complexes:

Hexamine nickel(II), [Ni(NH₃)₆]Cl₂

Potassium trioxalatoferrate(III) trihydrate

Tetraamminecopper(II) sulphate, [Cu(NH₃)₄]SO₄.H₂O

Tetraamminecarbonatocobalt(III) nitrate

Complexometric titration

- i. Estimation of Ca by EDTA
- ii. Estimation of Mg by EDTA

Gravimetric Analysis:

- i. Estimation of nickel(II) using dimethylglyoxime (DMG).
- ii. Estimation of copper as CuSCN
- iii. Estimation of iron as Fe₂O₃ by precipitating iron as Fe(OH)₃.
- iv. Estimation of Al(III) by precipitating with oxine and weighing as Al(oxine)₃ (aluminiumoxinate).

Reference Books:

- 1. Vogel, A.I. A Textbook of Quantitative Inorganic Analysis, ELBS (1978).
- 2. Ahluwalia, V.K., Dhingra, S. and Gulati A, College Practical Chemistry, University Press (2005).
- 3. Gulati Shikha, Sharma Gulati JL and ManochaShagun, Practical Inorganic Chemistry, 1stEdn., CBS Publishers & Distributors Pvt Ltd., (2017).

CORE PAPER IX

ORGANIC CHEMISTRY-III

Course Learning Outcome:

- To understand the chemistry of organic compounds containing Nitrogen such as: amines, diazonium salt.
- To understand the chemistry of poly nuclear hydrocarbons like naphthalene and anthracene.
- To understand the chemistry of Heterocyclic compounds likeFuran, Pyrole & Thiophene.
- To understand the chemistry of and alkaloids and terpinoids.
- To develop the skills to identify unknown organic compound.

UNIT-I

Nitrogen Containing Functional Groups

Preparation and important reactions of nitro and compounds, nitriles.

Amines: Effect of substituent and solvent on basicity; Preparation and properties: Gabriel phthalimide synthesis, Carbylamine reaction, Mannich reaction, Hoffmann's exhaustive methylation, Hofmann-elimination reaction; Distinction between 1°, 2° and 3° amines with Hinsberg reagent and nitrous acid.

UNIT-II

Diazonium Salts

Preparation and their synthetic applications.

Polynuclear Hydrocarbons

Reactions of naphthalene and anthracene Structure, Preparation and structure elucidation and important derivatives of naphthalene and anthracene. Polynuclear hydrocarbons.

UNIT-III

Heterocyclic Compounds

Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Pyrimidine. Fischer indole synthesis and Madelung synthesis,

Derivatives of furan: Furfural and furoic acid (preparation only).

UNIT-IV

Alkaloids

Natural occurrence, General structural features, Isolation and their physiological action Hoffmann's exhaustive methylation, Emde's modification, Structure elucidation and synthesis of Hygrine and Nicotine. Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.

Terpenes

Occurrence, classification, isoprene rule; Elucidation of structure and synthesis of Citral, Neral and α -terpineol.

Recommended Text Books:

- 1. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Advanced Organic Chemistry, 2nd Edition, Arun Bahl & B S Bahl, S. Chand Publisher, 2012.

Reference Books:

- 1. Graham Solomons T. W., Fryhle, Craig B., Snyder Scott A, Organic Chemistry, Wiley Student Ed, 11th Edition (2013)
- 2. Jonathan Clayden, Nick Greeves, Stuart Warren, Organic Chemistry, 2nd Edition, Oxford Publisher, 2014.
- 3. Dhawan, S.N., Pradeep's Organic Chemistry, (Vol. I and II), Pradeep Publications

CORE PAPER IX LAB

Qualitative organic analysis of organic compounds

- 1. Detection of extra elements (N, X, S) in organic compounds by Lassaigne's test.
- 2. Qualitative analysis of unknown organic compounds containing simple functional groups under CHN system (amine, nitro, amide and imide), determination of melting/boiling point, and preparation of their derivative.

Reference Books

- 1. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- 2. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical OrganicChemistry, 5th Ed., Pearson (2012)
- 3. Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry:Qualitative Analysis, University Press (2000).
- 4. Ghoshal, A., Mahapatra, B., Nad, A. K. An Advanced Course in Practical Chemistry, New Central Book Agency (2007).

CORE PAPER X

PHYSICAL CHEMISTRY-IV

Course Learning Outcome:

- To understand concepts like theories of conductance and principles of electrochemistry.
- To understand, how to determine different physical quantities using conductance measurement methods.
- To understand construction and functioning of different types of electro chemical cells.
- To develop the skills to work with conductivity meter and potentiometer.

UNIT-I

Conductance-I

Arrhenius theory of electrolytic dissociation. Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Molar conductivity at infinite dilution. Kohlrausch law of independent migration of ions. Debye-Hückel-Onsager equation, Wien effect, Debye-Falkenhagen effect, Walden's rules.

UNIT-II

Conductance-II

lonic velocities, mobilities and their determinations, transference numbers and their relation to ionic mobilities, determination of transference numbers using Hittorf and Moving Boundary methods. Applications of conductance measurement: (i) degree of dissociation of weak electrolytes, (ii) ionic product of water (iii) solubility and solubility product of sparingly soluble salts, (iv) conductometric titrations, and (v) hydrolysis constants of salts.

UNIT-III

Electrochemistry-I

Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, applications of electrolysis in metallurgy and industry. Chemical cells, reversible and irreversible cells with examples. Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential and its application to different kinds of half-cells. Application of EMF measurements in determining free energy, enthalpy and entropy of a cell reaction, (ii) equilibrium constants, and (iii) pH values, using hydrogen, quinone-hydroquinone, glass electrodes.

UNIT-IV

Electrochemistry-II

Concentration cells with and without transference, liquid junction potential; determination of activity coefficients and transference numbers. Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation).

Electrical properties of atoms and molecules

Basic ideas of electrostatics, Electrostatics of dielectric media. Clausius-Mosotti equation and Lorenz-Laurentz equation (no derivation), Dipole moment and molecular polarizabilities and their measurements.

Recommended Text Books:

- 1. Atkins P. W. & Paula, J. de, Elements of Physical Chemistry, Oxford University Press, 6th Ed., (2006).
- 2. Puri, Sharma &Pathania, Principles of Physical Chemistry, Vishal Publishing Co, 47th Edn., 2017.
- 3. Kapoor, K. L., Text Book of Physical Chemistry, Mac Grow Hill, 3rdEdn., 2017
- 4. Castellan G. W. Physical Chemistry 4th Ed. Narosa (2004).

Reference Books:

- 1. Engel T. & Reid P., Physical Chemistry 3rd Ed. Pearson (2013).
- 2. Levine, I. N. Physical Chemistry 6thEd., Tata McGraw-Hill (2011).
- 3. McQuarrie, D. A. & Simon, J. D. Molecular Thermodynamics Viva Books Pvt. Ltd.: New Delhi (2004).
- 4. Kheterpal S.C., Pradeep's Physical Chemistry, Vol. I & II, Pradeep Publications

CORE PAPER X LAB

Conductometry

- Determination of cell constant.
- Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
- III. Perform the following conductometric titrations:
 - i. Strong acid vs. strong base
 - ii. Weak acid vs. strong base
 - iii. Strong acid vs. weak base

Potentiometry

- I Perform the following potentiometric titrations:
 - i. Strong acid vs. strong base
 - ii. Weak acid vs. strong base
 - iii. Dibasic acid vs. strong base

- 1. Khosla, B. D.; Garg, V. C. & Gulati, A., Senior Practical Physical Chemistry, R. Chand &Co., New Delhi (2011).
- 2. Garland, C. W.; Nibler, J. W. & Shoemaker, D. P., Experiments in Physical Chemistry8th Ed.; McGraw-Hill: New York (2003).
- 3. Halpern, A. M. &McBane, G. C., Experimental Physical Chemistry 3rdEd.; W.H. Freeman & Co., New York (2003).
- 4. Viswanathan, B., Raghavan, P.S., Practical Physical Chemistry, Viva Books (2009).

CORE PAPER- XI

ORGANIC CHEMISTRY-IV

Course Learning Outcome:

- To understand the basic principles and instrumentation UV-Visible spectroscopy, IR spectroscopy and NMR spectroscopy.
- To understand the interpretation of spectrum in relation to the structure of organic molecule.
- To understand the chemistry of carbohydrates in relation to structure and properties.
- To develop the skills to identify organic compounds including carbohydrates and also to estimate organic compounds quantitatively.

UNIT-I

Organic Spectroscopy-I

UV Spectroscopy: Types of electronic transitions, λ_{max} , Lambert-Beer's law and its limitations, Chromophores and Auxochromes,Bathochromic and Hypsochromic shifts, Intensity of absorption; Application of Woodward rules for calculation of λ_{max} for the following systems: α,β the unsaturated aldehydes: ketones, carboxylic acids and esters; Conjugated dienes: alicyclic, homoannular and heteroannular; Extended conjugated systems (aldehydes, ketones and dienes); distinction between cis and trans isomers.

UNIT-II

Organic Spectroscopy-II

IR Spectroscopy: Fundamental and non-fundamental molecular vibrations; IR absorption positions of O and N containing functional groups; Effect of H-bonding, conjugation, resonance and ring size on IR absorptions; Fingerprint region and its significance; application in simple functional group analysis.

UNIT-III

Organic Spectroscopy-III

NMR Spectroscopy: Basic principles of Proton Magnetic Resonance, chemical shift andfactors influencing it; Spin-spin coupling and coupling constant; Anisotropic effects in alkene, alkyne, aldehydes and aromatics; Interpretation of NMR spectra of simple compounds. *Mass Spectroscopy*- Basic principle, Fragmentation pattern, instrumentation, determination of m/e ratio. Application of mass spectroscopy on CH₄, C₂H₆, *n*-butane and *neo*-pentane. Applications of IR, UV & NMR for identification of simple organic molecules.

UNIT-IV

Carbohydrates

Occurrence, classification and their biological importance.

Monosaccharides: Constitution and absolute configuration of glucose and fructose, epimers and anomers, mutarotation, determination of ring size of glucose and fructose, Haworth projections and conformational structures; Interconversions of aldoses and ketoses; Killiani-Fischer synthesis and Ruff degradation; Disaccharides – Structure elucidation of maltose; Polysaccharides – Elementary treatment of starch, cellulose.

Recommended Text Books:

- 1. Kemp William, Organic Spectroscopy, 3rd Edition, Palgrave Publisher, 1991.
- 2. Davis, B. G., Fairbanks, A. J., Carbohydrate Chemistry, Oxford Chemistry Primer,
- 3. J Kalsi P. S., Spectroscopy of Organic Compounds, 5th Edition, , New Age International Publishers, 2016.
- 4. Advanced Organic Chemistry, 2nd Edition, Arun Bahl & B S Bahl, S. Chand Publisher, 2012.

Reference Books:

- 1. Y R Sharma, Elementary Organic Spectroscopy, 5th Edition, S. Chand & Company, 2013.
- 2. Jag Mohan, Organic Spectroscopy and Applications, NarosaPublishrs, 2012.
- 3. Graham Solomons T. W., Fryhle, Craig B., Snyder Scott A, Organic Chemistry, Wiley Student Ed, 11th Edition (2013).
- 4. Jonathan Clayden, Nick Greeves, Stuart Warren, Organic Chemistry, 2nd Edition, Oxford Publisher, 2014.
- 5. Dhawan, S.N., Pradeep's Organic Chemistry, (Vol. I and II), Pradeep Publications

CORE PAPER XI LAB

- Qualitative analysis of carbohydrate: aldoses and ketoses, reducing and nonreducing sugars.
- 2. Qualitative analysis of unknown organic compounds containing simple bifunctional groups, for e.g. salicylic acid, cinnamic acid, nitrophenols etc.
- 3. Quantitative estimation of sugars:
 - (a) Estimation glucose by titration with Fehling's solution.
 - (b) Estimation of sucrose by titration with Fehling's solution.
 - (c) Estimation glucose and sucrose in a given mixture.
- 4. Identification of labelled peaks in the ^{1}H NMR spectra of the known organic compounds explaining the relative δ -values and splitting pattern.
- 5. Identification of labelled peaks in the IR spectrum of the same compound explaining the relative frequencies of the absorptions.

- 1. Vogel, A.I. Quantitative Organic Analysis, Part 3, Pearson (2012).
- 2. Mann, F.G. & Saunders, B.C. *Practical Organic Chemistry,* Pearson Education (2009)
- 3. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. *Practical OrganicChemistry*, 5th Ed., Pearson (2012)
- 4. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry:Preparation and Quantitative Analysis, University Press (2000).
- 5. Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry: Qualitative Analysis, University Press (2000).

CORE PAPER XII

PHYSICAL CHEMISTRY V

Course Learning Outcome:

- To understand the basis of quantum mechanics and its application to simple problems.
- To understand the nature of covalent bond with quantum mechanical approach.
- To understand rotational spectra of linear diatomic and triatomic molecule and its applications.
- To explain Hooks law (Harmonic oscillator) and to explain IR spectra of diatomic molecule.
- To explain energy levels and selection rules for vibrating rotator.
- To understand basic principles of photochemistry and photochemical reactions.
- To develop the skill of using UV –Visible spectrophotometer to solve different problems.

UNIT-I

Quantum Chemistry-I

Quantum mechanical operators, Postulates of quantum mechanics, Schrödinger equation and its application to particle in one-dimensional box (complete solution) - quantization of energy levels, zero-point energy, normalization of wave functions, probability distribution functions, nodal properties. Extension to three-dimensional boxes, separation of variables, degeneracy.

Qualitative treatment of simple harmonic oscillator model of vibrational motion: Setting up of Schrödinger equation and discussion of solution and wave functions. Vibrational energy of diatomic molecules and zero-point energy.

Angular momentum: Commutation rules, quantization of square of total angular momentum and z-component.

Rigid rotator model of rotation of diatomic molecule: Schrödinger equation, transformation to spherical polar coordinates. Separation of variables (Preliminary treatment).

UNIT-II

Chemical Bonding

Chemical bonding: Covalent bonding, valence bond and molecular orbital approaches, LCAO-MO treatment of H₂⁺. Bonding and antibonding orbitals. Qualitative extension to H₂. Comparison of LCAO-MO and VB treatments of H₂ (only wave functions, detailed solution not required) and their limitations. Localized and non-localized molecular orbitals treatment of triatomic (BeH₂, H₂O) molecules. Qualitative MO theory and its application to AH₂ type molecules.

UNIT-III

Molecular Spectroscopy-I

Interaction of electromagnetic radiation with molecules and various types of spectra; Born-Oppenheimer approximation.

Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution.

Vibrational spectroscopy: Classical equation of vibration, computation of force constant, amplitude of diatomic molecular vibrations, anharmonicity, Morse potential, dissociation energies, fundamental frequencies, overtones, hot bands, degrees of freedom for polyatomic molecules, modes of vibration. Vibration-rotation spectroscopy: diatomic vibrating rotator, P, Q, R branches.

UNIT-IV

Molecular Spectroscopy-II

Raman spectroscopy: Qualitative treatment of Rotational Raman effect; Effect of nuclear spin, Vibrational Raman spectra, Stokes and anti-Stokes lines; their intensity difference, rule of mutual exclusion.

Electronic spectroscopy: Franck-Condon principle, electronic transitions, singlet and triplet states, fluorescence and phosphorescence, dissociation and predissociation.

Photochemistry

Characteristics of electromagnetic radiation, physical significance of absorption coefficients. Laws of photochemistry, quantum yield, actinometry, examples of low and high quantum yields, photochemical equilibrium and the differential rate of photochemical reactions, photosensitised reactions, quenching, chemiluminescence.

Recommended Text Books:

- 1. McQuarie D., Quantum Chemistry, University Science Publishers, 2007
- Chandra, A. K. Introductory Quantum Chemistry Tata McGraw-Hill (2001).
- 3. Banwell, C. N. &McCash, E. M. Fundamentals of Molecular Spectroscopy 4th Ed. Tata McGraw-Hill: New Delhi (2010).
- 4. Prasad R K., Quantum Chemistry, New Age International Publishers, 4thEdn, 2010.
- 5. Rohatagi Mukherjee K K., Fundamentals of Photochemistry, Wiley Eastern Ltd., 1992.

- 1. Puri, Sharma &Pathania, Principles of Physical Chemistry, Vishal Publishing Co, 47th Edn., 2017.
- 2. Kapoor, K. L., Text Book of Physical Chemistry, McGraw Hill, Vol. II, IV
- 3. Levine, I. N. Quantum Chemistry, PHI

CORE PAPER XII LAB

Spectroscopy/Colorimetry

- 1. Study of absorption spectra (visible range) of KMnO₄ and determine the λ_{max} value. Calculate the energies of the transitions in kJ mol⁻¹, cm⁻¹, and eV.
- 2. Verify Lambert-Beer's law and determine the concentration of CuSO₄/KMnO₄/K₂Cr₂O₇ in a solution of unknown concentration.
- 3. Determine the dissociation constant of an indicator (phenolphthalein).

Spectrophotometric titration

- 1. Determine the concentration of HCl against 0.1 N NaOH spectrophotometrically.
- 2. To find the strength of given ferric ammonium sulfate solution of (0.05 M) by using EDTA spectrophotometrically.
- 3. To find out the strength of CuSO₄ solution by titrating with EDTA spectrophotometrically.
- 4. To determine the concentration of Cu(II) and Fe(III) solution photometrically by titrating with EDTA.

- 1. Khosla, B. D.; Garg, V. C. & Gulati, A., Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi (2011).
- 2. Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. *Experiments in PhysicalChemistry 8th Ed.;* McGraw-Hill: New York (2003).
- 3. Halpern, A. M. &McBane, G. C. *Experimental Physical Chemistry 3rdEd.;* W.H. Freeman & Co.: New York (2003).
- 4. J. N. Gurtu, R. Kapoor, Experimental Physical Chemistry.

CORE PAPER XIII

INORGANIC CHEMISTRY-IV

Course Learning Outcome:

- To understand structure and bonding in carbonyls and their reactions.
- To understand structure some organometallic compound and their application as catalysts.
- To understand inorganic reaction mechanism, trans effect and ligand substitution reactions..
- To develop the skills to identify the cations and anions in a salt mixture.

UNIT-I

Organometallic Compounds-I

Definition and classification of organometallic compounds on the basis of bond type. Concept of hapticity of organic ligands. Metal carbonyls: 18 electron rule, electron count of mononuclear, polynuclear and substituted metal carbonyls of 3d series. General methods of preparation (direct combination, reductive carbonylation, thermal and photochemical decomposition) of mono and binuclear carbonyls of 3d series. Structures of mononuclear and binuclear carbonyls of Cr, Mn, Fe, Co and Ni using VBT. π -acceptor behaviour of CO (MO diagram of CO to be discussed), synergic effect and use of IR data to explain extent of back bonding.

Zeise's salt: Preparation and structure, evidences of synergic effect and comparison of synergic effect with that in carbonyls.

UNIT-II

Organometallic Compounds-II

Metal Alkyls: Important structural features of methyl lithium (tetramer) and trialkyl aluminium (dimer), concept of multicentre bonding in these compounds. Role of triethylaluminium in polymerisation of ethene (Ziegler – Natta Catalyst). Species present in ether solution of Grignard reagent and their structures.

Ferrocene: Preparation and reactions (acetylation, alkylation, metallation, Mannich Condensation), structure and aromaticity, comparison of aromaticity and reactivity with that of benzene.

UNIT-III

Catalysis by Organometallic Compounds

Study of the following industrial processes and their mechanism:

- Alkene hydrogenation (Wilkinson's Catalyst)
- 2. Hydroformylation (Co salts)
- 3. Wacker Process
- 4. Synthetic gasoline (Fischer Tropsch reaction)

Theoretical Principles in Qualitative Analysis (H₂S Scheme)

Basic principles involved in analysis of cations and anions and solubility products, common ion effect. Principles involved in separation of cations into groups and choice of group reagents. Interfering anions (fluoride and phosphate) and need to remove them after Group II.

UNIT-IV

Thermodynamic & kinetic aspects and reaction mechanism of metal complexes

Thermodynamic and kinetic stability, Stepwise and overall formation constants and their relationship, factors affecting stability. Introduction to inorganic reaction mechanisms-types of reaction and classification od substitution reaction. Substitution reaction of square planar complexes, Trans effect and its applications, theories of trans-effect (electrostatic polarization and Static π -Bonding Theory). Kinetics of octahedral substitution (classification of metal ions based on water exchange rate), General mechanism of ligand substitution reactions in octahedral complexes (D, I, I_d, I_a).

Recommended Text Books:

- 1. Huheey J. E., Keiter E. A. and Keiter R. L., Inorganic Chemistry Principles of structure and reactivity, , Pearson Education, 4th Ed. 2002.
- 2. Puri, Sharma, Kalia, Principles of Inorganic Chemistry, Vishal Pub. Co., 33rd ed., 2017.
- 3. Shriver D. E., Atkins P. W., InorganicChemistry, Oxford University Press, 5th Edn..
- 4. Svehla, G. *Vogel's Qualitative Inorganic Analysis*, 7th Edition, Prentice Hall, 1996-0307.

Reference books

- 1. Das Asim K., Fundamentals of Inorganic Chemistry, Vol. II, CBS Publications, 2nd Ed. 2010.
- 2. Selected Topic in Inorganic Chemistry, Mallick, Madan and Tuli, S. Chand Publisher. 17th Ed. 2010.
- 3. Mehrotra R.C. and Singh, A. *Organometallic Chemistry*, New Age International Publishers, 2ndEdn, 2000.
- 4. Gupta B. D. and Elias A. J., Basic organometallic Chemistry, 2ndEdn., University Press (2013).

CORE PAPER XIII LAB

1. Qualitative analysis of mixtures containing 4 radicals (2 anions and 2 cations).
Emphasis should be given to the understanding of the chemistry of different reactions. The following radicals are suggested:

□□□ Mixtures may contain one insoluble component (BaSO₄, SrSO₄, PbSO₄, CaF₂ or Al₂O₃)

Or combination of interfering anions e.g. CO_3^{2-} and SO_3^{2-} , NO_2^{-} and NO_3^{-} , CI^- and Br^- , CI^- and I^- , Br^- and I^- , NO_3^{-} and I^- .

3. Spot tests should be done whenever possible.

- Vogel's Qualitative Inorganic Analysis, 7th Ed, Revised by G. Svehela, 4th Ed., Person (2007).
- 2. Gulati Shikha , Sharma Gulati JL and ManochaShagun, Practical Inorganic Chemistry, 1stEdn., CBS Publishers & Distributors Pvt Ltd., (2017).

CORE PAPER XIV

ORGANIC CHEMISTRY-V

Course Learning Outcome:

- To understand the chemistry of amino acids vis-a-vis proteins in relation to the structure, physical, chemical and biological characteristics.
- To understand structure and function of enzymes, nuclic acids and lipids in relation to their biological importance.
- To understand and appreciate the concepts of bioenergetics.
- To understand and appreciate the applications of chemistry in forms of medicines & dyes.
- To develop the skill of preparation of simple drugs like Paracetamol, Vitamin C, Aspirin etc. and some dyes like methyl orange.

UNIT-I

Amino Acids, Peptides and Proteins

Amino acids: Classification; α -Amino acids - Synthesis, ionic properties and reactions. Zwitter ions, pK_a values, isoelectric point and electrophoresis.

Peptides: Classification, determination of their primary structures-end group analysis, methods of peptide synthesis. Synthesis of peptides using N-protecting, C-protecting and activating groups –Solid Phase Synthesis.

Proteins: Structure of proteins, protein denaturation and renaturation

UNIT-II

Enzymes

Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes. Mechanism of enzyme action (taking trypsin as example), factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions, specificity of enzyme action (including stereo specificity), enzyme inhibitors and their importance, phenomenon of inhibition (competitive, uncompetitive and non-competitive inhibition including allosteric inhibition).

Nucleic Acids

Components of nucleic acids, Nucleosides and nucleotides;

Structure, synthesis and reactions of: Adenine, Guanine, Cytosine, Uracil and Thymine; Structure of polynucleotide's.

UNIT-III

Lipids

Introduction to oils and fats; common fatty acids present in oils and fats, Hydrogenntion of fats and oils, Saponification value, acid value, iodine number. Reversion and rancidity.

Concept of Energy in Bio systems

Cells obtain energy by the oxidation of foodstuff (organic molecules). Introduction tometabolism (catabolism and anabolism). Overview of catabolic pathways of fat and protein. Interrelationship in the metabolic pathways of protein, fat and carbohydrate. Caloric value of food, standard caloric content of food types.

UNIT-IV

Pharmaceutical Compounds: Structure and Importance

Classification, structure and therapeutic uses of antipyretics: Paracetamol (with synthesis), Analgesics: Ibuprofen (with synthesis), Antimalarials: Chloroquine (with synthesis). An elementary treatment of Antibiotics and detailed study of chloramphenicol, Medicinal values of curcumin (haldi), azadirachtin (neem), vitamin C and antacid (ranitidine).

Dyes

Classification, colour and constitution; Mordant and Vat dyes; Chemistry of dyeing. Synthesis and applications of: *Azo dyes* – Methyl orange and Congo red (mechanism of Diazo Coupling); *Triphenylmethane dyes* - Malachite Green, and crystal violet; *Phthalein dyes* – Phenolphthalein and Fluorescein.

Recommended Text books

- 1. Nelson, D.L., Cox, M.M. and Lehninger, A.L. Principles of Biochemistry. 6thEdn. W.H. Freeman and Co. (2013).
- 2. Kar Ashutosh, Medicinal chemistry, New Age International (P) Ltd., (2007)
- 3. Debojyoti Das, Biochemistry, (part-I) Academic Publishers (1979)

Reference Books:

- 1. Talwar, G.P. & Srivastava, M. Textbook of Biochemistry and Human Biology, 3rd Ed. PHI Learning.
- 2. Berg, J.M., Tymoczko, J.L. &Stryer, L. Biochemistry, W.H. Freeman, 2002.
- 4. Murray, R.K., Granner, D.K., Mayes, P.A. and Rodwell, V.W. (2009) Harper's Illustrated Biochemistry. XXVIII edition. Lange Medical Books/ McGraw-Hill.
- 5. Berg, J.M., Tymoczko, J.L. and Stryer, L. (2006) Biochemistry, 6th Edition. W.H. Freeman and Co. (2002).
- 6. Wilson, K. & Walker, J. Practical Biochemistry. Cambridge University Press (2009).
- 7. The Tools of Biochemistry (1977; Reprint 2011) Cooper, T.G., Wiley India Pvt. Ltd. (New Delhi), ISBN: 978-81-265-3016-8.

CORE PAPER XIV LAB

- 1. Preparations of the following compounds
 - i. Aspirin
 - ii. Methyl orange
- 2. Estimation of phenol and aniline by bromination method.
- 3. Saponification value of an oil/fat/ester.
- 4. Estimation of glycine by Sorenson's formalin method.
- 5. Estimation formaldehyde (formalin).
- 6. Estimation of ascorbic acid in fruit juices/Vitamin C tablet (Iodometric method)
- 7. Determination of lodine number of an oil/ fat.

- 1. Arthur, I. Vogel, Elementary Practical Organic Chemistry, Part-1 Small scale preparations, Indian Edition, Pearson (2011).
- 2. Manual of Biochemistry Workshop, 2012, Department of Chemistry, University of Delhi.
- 3. Arthur, I. Vogel, Quantitative Organic Analysis, Pearson.
- 4. Wilson, K. & Walker, J. Practical Biochemistry. Cambridge University Press (2009).

Discipline Specific Elective Paper-1 POLYMER CHEMISTRY

Learning outcome:

After completion of the course the learner can be able to understand

- 1. The mechanism of polymer material formation
- 2. Molecular weight and structure property relationship.
- 3. Polymerization procedure and Zeigler Natta Catalyst.
- 4. Characterization of polymer.

UNIT-I

Introduction and history of polymeric materials:

Different schemes of classification of polymers, Polymer nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers.

Functionality and its importance:

Criteria for synthetic polymer formation, classification of polymerization processes, Relationships between functionality, extent of reaction and degree of polymerization. Bifunctional systems, Poly-functional systems.

UNIT-II

Mechanism & Kinetics of Polymerization:

Polymerization reactions – addition and condensation, mechanism and kinetics of step growth, radical chain growth, ionic chain (both cationic and anionic) and coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques.

Crystallization and crystallinity:

Determination of crystalline melting point and degree of crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point.

UNIT-III

Molecular weight of polymers and their determination (M_n,M_w, M_v, M_z) by end group analysis,viscometry and osmotic pressure methods. Molecular weight distribution and its significance. Polydispersity index.

Glass transition temperature (T_g) and it determination: WLFequation, Outlines of factors affecting glass transition temperature (T_g) .

UNIT-IVProperties of polymers (physical, thermal and mechanical properties). **Preparation, structure, properties and applications of the following polymers:** polyolefins (polyethylene, polypropylene), polystyrene, polyvinyl chloride, polyvinyl acetate, polyacrylamide, fluoro polymers (Teflon), polyamides (nylon-6 and nylon 6,6). Thermosetting polymers - phenol formaldehyde resins (Bakelite, Novalac), polyurethanes, conducting polymers (polyacetylene, polyaniline). Brief outline of biodegradable polymers.

Recommended Text Books:

- V. R. Gowarikar, Jayadev Sreedhar, N. V. Viswanathan, Polymer Science 1st Edition, New Age International Publishers, 1986.
- 2. Premamoy Ghosh, Polymer Science and Technology: Plastics, Rubber, Blends and Composites, 3rdEdition, McGraw Hill Education, 2010.
- 3. P. Bahadur &N.V.Sastry, Principles of polymer science, Narosa Publishing house, New Delhi 2002.
- 4. Fred W. Billmeyer, Textbook of Polymer Science, 3rd ed. Wiley-Interscience (1984)

Reference books

- L.H. Sperling, Introduction to Physical Polymer Science, 4th ed. John Wiley & Sons (2005)
- Malcolm P. Stevens, Polymer Chemistry: An Introduction, 3rd ed. Oxford University Press (2005)
- 3. Seymour/Carraher's Polymer Chemistry, 9th ed. by Charles E. Carraher, Jr. (2013).
- 4. Nayak P.L., Polymer Chemistry, Kalyani Publisher (2017).

Discipline Specific Elective Paper I LAB

Polymer synthesis (at least three experiments)

- 1. Preparation of nylon-6,6 / Polyaniline
- 2. Preparations of phenol-formaldehyde resin-novalac / phenol-formaldehyde resin resold.
- 3. Preparation of urea-formaldehyde resin
- 4. Free radical solution polymerization of styrene (St) / Methyl Methacrylate (MMA) / Methyl Acrylate (MA) / Acrylic acid (AA).
 - a. Purification of monomer
 - b. Polymerization using benzoyl peroxide (BPO) / 2,2'-azo-bis-isobutylonitrile (AIBN)
- 5. Redox polymerization of acrylamide
- 6. Precipitation polymerization of acrylonitrile

Polymer characterization/analysis (At least two different experiemtn)

- 1. Determination of molecular weight by viscometry:
 - a. Polyacrylamide / Polystyrene
 - b. (Polyvinyl pyrolidine (PVP)
- 2. Determination of acid value/saponification value of a resin.
- 3. Determination of hydroxyl number of a polymer using colorimetric method.
- 4. Estimation of the amount of HCHO in the given solution by sodium sulphite method
- 5. Analysis of some IR spectra of polymers Identification of labelled peaks in IR spectra of known polymer.

- 1. Hundiwale G.D., Athawale V.D., Kapadi U.R. and Gite V. V., Experiments in Polymer Science, New Age Publications (2009)
- 2. Malcohm P. Stevens, Polymer Chemistry: An Introduction, 3rd Ed.
- 3. Joel R. Fried, Polymer Science and Technology, 2nd ed. Prentice-Hall (2003)
- 4. Petr Munk and Tejraj M. Aminabhavi, Introduction to Macromolecular Science, 2nd ed. John Wiley & Sons (2002)
- 5. Malcolm P. Stevens, Polymer Chemistry: An Introduction, 3rd ed. Oxford University Press (2005)

Discipline Specific Elective Paper-II GREEN CHEMISTRY

Learning outcome:

- 1. Learn an interdisciplinary approach to the scientific and social issues arising from pollution of environment and green approach for its solution.
- 2. To understand the basic principles of Green Chemistry.
- 3. To understand the green synthetic methods of different compounds
- 4. To understand the scope of green chemistry.

UNIT-I

Introduction to Green Chemistry

What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry. Limitations/ Obstacles in the pursuit of the goals of Green Chemistry.

Principles of Green Chemistry and Designing a Chemical synthesis-I

Twelve principles of Green Chemistry. Explanations of principle with special emphasis on - Designing green synthesis processes: Prevention of Waste/ by-products; maximize the incorporation of the materials used in the process into the final products (Atom Economy) with reference to rearrangement, addition, substitution and elimination reactions; Prevention/ minimization of hazardous/ toxic products; Designing safer chemicals; Use of safer solvents and auxiliaries (e.g. separating agent) - green solvents (supercritical CO₂, water, ionic liquids), solventless processes, immobilized solvents.

UNIT-II

Principles of Green Chemistry and Designing a Chemical synthesis-II

Explanation of green chemistry principles with special emphasis on:

Energy efficient processes for synthesis - use of microwaves and ultrasonic energy. Selection of starting materials (use of renewable feedstock); avoidance of unnecessary derivatization (e.g. blocking group, protection groups, deprotection); Use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; designing of biodegradable products use of chemically safer substances for prevention of chemical accidents, inherent safer design greener - alternative to Bhopal Gas Tragedy (safer route to carcarbaryl) and Flixiborough accident (safer route to cyclohexanol); real-time, in-process monitoring and control to prevent the formation of hazardous substances; development of green analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes;

UNIT-III

Examples of Green Synthesis/ Reactions and some real world cases-I

Green Synthesis of the following compounds: adipic acid, catechol, methyl methacrylate, urethane, disodium iminodiacetate (alternative to Strecker synthesis), paracetamol, furfural. *Microwave assisted reactions:* Applications to reactions (i) in water: Hofmann Elimination, hydrolysis (of benzyl chloride, methyl benzoate to benzoic acid), Oxidation (of toluene, alcohols); (ii) reactions in organic solvents: Diels-Alder reaction and Decarboxylation reaction. *Ultrasound assisted reactions:* Applications to esterification, saponification, Simmons-Smith Reaction (Ultrasonic alternative to lodine).

UNIT-IV

Examples of Green Synthesis/ Reactions and some real world cases-II

Surfactants for carbon dioxide – replacing smog producing and ozone depleting solvents with CO₂ for precision cleaning and dry cleaning of garments; Designing of Environmentally safe marine antifoulant; Rightfit pigment: synthetic azopigments to replace toxic organic and inorganic pigments; Synthesis of a compostable and widely applicable plastic (poly lactic acid) from corn; Development of Fully Recyclable Carpet: Cradle to Cradle Carpeting

Future Trends in Green Chemistry

Oxidizing and reducing reagents and catalysts; multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; Green chemistry in sustainable development. (Bio-diesel, bio-ethanol and biogas)

Recommended Text Books:

- 1. Anastas P.T. & Warner J.K.: Green Chemistry- Theory and Practical, Oxford University Press (2000).
- 2. Ahluwalia V.K. & Kidwai M.: New Trends in Green Chemistry, Anamalaya Publishers, New Delhi (2004).
- 3. Kumar V., An Introduction to Green Chemistry, Vishal Publishing Co., (2015).

- 1. Matlack A.S. Introduction to Green Chemistry, Marcel Dekker (2001).
- Das Asim K. amd Das Mahua , Environment Chemistry with Green Chemistry, Books and Allied (P) Ltd. (2010)

Discipline Specific Elective Paper II LAB

At least five experiments should be done:

- 1. Acetylation of primary amine (Aniline to N-phenylacetamide) using Zn dust.
- 2. Nitration of salicylic acid by green method (Using calcium nitrate and acetic acid).
- 3. Bromination of acetanilide using ceric ammonium nitrate/KBr.
- 4. Microwave assisted nitration of Phenols using Cu(NO₃)₂.
- 5. Detection of elements in organic compounds by green method (Sodium carbonate fusion)
- 6. Base catalyzed Aldol condensation (Synthesis of dibenzalpropanone)
- 7. Vitamin C clock reaction using vitamin C tablets, tincture of iodine, hydrogen peroxide and liquid laundry starch. Effect of concentration on clock reaction.
- 8. Photoreduction of benzophenone to benzopinacol in the presence of sunlight.
- 9. Diels Alder reaction in water: Reaction between furan and maleic acid in water and at room temperature rather than in benzene and reflux.
- 10. Preparation and characterization of nanoparticles (Cu, Ag) using plant extract.
- 11. Preparation of propene by following two methods or any other reactions like addition, elimination, substitution showing atomic economy can be studied
 - (I) Triethylamine ion + $OH^- \rightarrow propene$ + trimethylpropene + water H_2SO_4/Δ
 - (II) 1-propanol → propene + water

- 1. Monograph on Green Chemistry Laboratory Experiments, edited and published by Green Chemistry Task Force Committee, DST Govt. of India, p. 1-79.
- 2. Kirchoff, M. & Ryan, M.A. *Greener approaches to undergraduate chemistryexperiment*. American Chemical Society, Washington DC (2002).
- 3. Sharma, R.K.; Sidhwani, I.T. & Chaudhari, M.K. I.K. *Green Chemistry Experiment: A monograph International Publishing House Pvt Ltd. New Delhi*. Bangalore CISBN978-93-81141-55-7 (2013).

Discipline Specific Elective Paper-III INDUSTRIAL CHEMICALS AND ENVIRONMENT

Learning outcome:

- 1. After completion of this course the learner can able to understand about some hazardous and toxic chemicals used in different industries and how to handle these chemicals.
- 2. Different components of environment and the relationship between them.
- 3. Different types of environmental pollution and remedies.
- 4. Different energy sources and pollution.

UNIT-I

Industrial Gases and Inorganic Chemicals

Industrial Gases: Large scale production, uses, storage and hazards in handling of the following gases: oxygen, nitrogen, argon, hydrogen, acetylene, carbon monoxide, chlorine, sulphur dioxide.

Inorganic Chemicals: Manufacture, application and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, common salt, bleaching powder, sodium thiosulphate, hydrogen peroxide, potash alum, potassium dichromate and potassium permanganate.

Industrial Metallurgy

Preparation of metals (ferrous and nonferrous) and ultra pure metals for semiconductor technology.

UNIT-II

Environment and its segments

Ecosystems. Biogeochemical cycles of carbon, nitrogen and sulphur.

Air Pollution: Major regions of atmosphere. Chemical and photochemical reactions in atmosphere. Air pollutants: types, sources, particle size and chemical nature; Photochemical smog: its constituents and photochemistry. Environmental effects of ozone. Major sources of air pollution.

Pollution by SO₂, CO₂, CO, NO_x, and H₂S and control procedures.

Effects of air pollution on living organisms and vegetation. Greenhouse effect and global warming, Ozone depletion by oxides of nitrogen, chlorofluorocarbons and halogens, removal of sulphur from coal.

UNIT-III

Water Pollution: Hydrological cycle, water resources, aquatic ecosystems, Sources andnature of water pollutants, Techniques for measuring water pollution, Impacts of water pollution on hydrological and ecosystems.

Water purification methods. Effluent treatment plants (primary, secondary and tertiary treatment). Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, fertilizer. Sludge disposal.

Industrial waste management: incineration of waste. Water treatment and purification (reverse osmosis, ion exchange). Water quality parameters for wastewater, industrial water and domestic water.

UNIT-IV

Energy and Environment

Sources of energy: Coal, petrol and natural gas. Nuclear fusion/fission, solar energy, hydrogen, geothermal, tidal and hydel.

Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management.

Biocatalysis

Introduction to bio catalysis: Importance in green chemistry and chemical industry.

Recommended Text Books:

- De, A. K. Environmental Chemistry: New Age International Pvt., Ltd, New Delhi, 2010.
- 2. Stocchi E., Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.
- 3. Sharma, B.K. & Gaur, H. Industrial Chemistry, Goel Publishing House, Meerut (1996).

- 4. Felder R.M. and Rousseau R.W., *Elementary Principles of Chemical Processes*, Wiley Publishers, New Delhi.
- 5. Dara S. S., *A Textbook of Engineering Chemistry*, S. Chand & Company Ltd. New Delhi.
- 6. Miller G.T., Environmental Science, 11th edition. Brooks/ Cole (2006).
- 7. Mishra, Environmental Studies, Selective and Scientific Books, New Delhi (2005).

Discipline Specific Elective Paper III LAB

- 1. Determination of Dissolved Oxygen (DO) in water.
- 2. Determination of Chemical Oxygen Demand (COD)
- 3. Determination of Biological Oxygen Demand (BOD)
- 4. Percentage of available chlorine in bleaching powder.
- 5. Measurement of chloride, sulphate and salinity of water samples by simple titration method (AgNO₃ and potassium chromate).
- 6. Estimation of total alkalinity of water samples (CO₃²-, HCO₃-) using double titration method.
- 7. Measurement of dissolved CO₂.
- 8. Study of some of the common bio-indicators of pollution.
- 9. Estimation of SPM in air samples.
- 10. Preparation of borax/ boric acid.

- 1. Dara S. S., A Textbook on Experiments and Calculations in Engineering ChemistrySChand & Company; 9th Revised edition (2015).
- 2. E. Stocchi: *Industrial Chemistry*, Vol-I, Ellis Horwood Ltd. UK.
- 3. R.M. Felder, R.W. Rousseau: *Elementary Principles of Chemical Processes*, Wiley Publishers, New Delhi.
- 4. A. Kent: Riegel's *Handbook of Industrial Chemistry*, CBS Publishers, New Delhi.
- 5. S. M. Khopkar, *Environmental Pollution Analysis*: Wiley Eastern Ltd, New Delhi.

Discipline Specific Elective Paper-IV MINI PROJECT / DISSERTATION

A project work is to be carried out by the student in consultation with the teachers of the department. The report of work (dissertation) in a standard format is to be submitted and presented for evaluation.

Distribution of marks

- (a) Project Report/Dissertation (Proper documentation of literature, data, discussion etc. and logical flow of work undertaken): 60 Marks
- (b) Seminar/Presentation: 20 marks
- (c) Viva voce: 20 marks

A brief Guidelines to Project Work:

- 1. Students shall undertake the project work (experimental/theoretical) related to any branch of chemistry/Chemical science under the guidance of teacher(s) from the department or jointly with teachers/research personnel of other institutes.
- 2. The following activities have been outlined as guidelines (not exhaustive):
 - Physiochemical studies (pH, conductivity, turbidity, etc.) of different wetlands (ponds, lakes, river etc.)
 - Analysis of iron in pond / tube well / river water.
 - Analysis of Hardness of water samples.
 - Adulteration detection activities in food stuff and other edible items.
 - Extraction and preliminary characterization of useful chemicals (as far as possible) from plants.
 - Solubility, surface tension, and viscosity measurements of some solution of practical relevance, (cough syrup, soap solution, pesticides, fertilizers.. etc.)
 - Pollution related activities (Industrial/Agricultural/Municipal etc.)
 - Nutrition related activities, (essential metal detection in food, cereals, pulses, fruits etc.).
 - Small synthetical work (inorganic/Organic/Polymeric compounds)
- 2. The UG level project work is a group activity, maximum number of students being limited to five. HOD to notify the name of teacher(s) for supervising the project work of each group. A
 - teacher can guide more than one group, if necessary.
- 4. No two groups in the same institution are permitted to do project work on the same problem.

- 5. Each student shall prepare and submit the project report separately for evaluation.

 Two copies of project report are required to be submitted in bound form (spiral/paperback).
- 6. Ordinarily the students can avail the facilities of college laboratory and library for the purpose but for special requirements the student has to bear the expenses of the project.
- 7. The project report shall be divided as:

Chapter I: Introduction (Introduction on the topic, review of literature, objective

and scope of the work)

Chapter II: Materials and methods

Chapter II: Results and discussion

Chapter IV: Conclusions and Scope of future studies

Chapter V: References

- M. A. Malati, An Investigative, Integrated Approach to Practical Project Work; Mid-Kent College of Higher/Further Education, UK (October 1999); Imprint: Woodhead Publishing; ISBN: 978-1-898563-47-1.
- 2. Dean, J. R., Jones, A. M., Holmes, D., Reed, R., Weyers, J. & Jones, A. (2011) Practical skills in chemistry. 2nd Ed., Prentice-Hall, Harlow.

GENERIC ELECTIVE (GE)

Generic Elective Paper I (Theory)

ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS

Section A: Inorganic Chemistry-1

Unit-I

Atomic Structure

Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de-Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra.

Quantum mechanics: Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ 2, Schrödinger equation for hydrogen atom. Radial and angular parts of the hydogenic wave functions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Quantum numbers and their significance, shapes of s, p and d atomic orbital's, nodal planes.

Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations.

Unit-II

Chemical Bonding and Molecular Structure

lonic Bonding: General characteristics, energy considerations.Lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules and its applications. Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements. Concept of resonance and resonating structures in various inorganic and organic compounds. MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules (N2, O2) and heteronuclear diatomic molecules (CO, NO). Comparison of VB and MO approaches

Section B: Organic Chemistry-1

Unit- III

Fundamentals of Organic Chemistry Physical Effects, Electronic Displacements: Inductive effect, Electromeric effect, Resonance and hyperconjugation. Cleavage of bonds: Homolysis and heterolysis. Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals. Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Hückel's rule. Stereochemistry Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (up to two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). D and L; cis-trans nomenclature; CIP Rules: R/ S (for one chiral carbon atoms) and E / Z Nomenclature (for up to two C=C systems).

Unit-IV

Aliphatic Hydrocarbons

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Alkanes: (Up to 5 Carbons).Preparation:Catalytic hydrogenation, Wurtz reaction,Kolbe's synthesis, from Grignard reagent. Reactions: Free radical Substitution: Halogenation.

Alkenes: (Up to 5 Carbons)Preparation:Elimination reactions: Dehydration of alkenesand dehydrohalogenation of alkyl halides (Saytzeff's rule); cis-alkenes (Partial catalytic hydrogenation) and trans-alkenes (Birch reduction). Reactions: cis-addition (alk. KMnO4) and trans-addition (bromine), Addition of HX (Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis,

Alkynes: (Up to 5 Carbons)Preparation:Acetylene from CaC2and conversion intohigher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides.

Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO4,ozonolysis.

Recommended Text Books:

- 1. Lee J. D., Concise Inorganic Chemistry, Wiley India, 5thEdn., 2008.
- 2. Puri, Sharma, Kalia, Principles of Inorganic Chemistry, Vishal Pub. Co., 33rd ed.,
- 2017. 3. Shriver D. E., Atkins P. W., Inorganic Chemistry, Oxford University Press, 5th Edn..
- 4. Huheey J. E., Keiter E. A. and Keiter R. L., Inorganic Chemistry Principles of structure and reactivity, , Pearson Education, 4th Ed. 2002.
- 5. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 6. BhalArun & BhalB S, Advanced Organic Chemistry, 2nd Edition, S. Chand Publisher, 2012.
- 7. Kalsi, P. S. Stereochemistry Conformation and Mechanism; 8thEdn, New Age International, 2015.

Generic Elective Paper I LAB

Section A: Inorganic Chemistry

Volumetric Analysis

- 1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
- 2. Estimation of oxalic acid by titrating it with KMnO4.
- 3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO4.
- 4. Estimation of Fe(II) ions by titrating it with K2Cr2O7 using internal indicator.
- 5. Estimation of Cu(II) ions iodometrically using Na2S2O3.

Section B:Organic Chemistry

- 1. Detection of extra elements (N, S, CI) in organic compounds (containing up to two extra elements)
- 2. Separation of mixtures by Chromatography: Measure the Rf value in each case (combination of two compounds to be given) (f) Identify and separate the components of a given mixture of 2 amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography. (g) Identify and separate the sugars present in the given mixture by paper chromatography.

- 1. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- 3. Ahluwalia, V.K., Dhingra, S. and Gulati A, College Practical Chemistry, University Press (2005).

Generic Elective Paper II (Theory)

CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY

Section A: Physical Chemistry-I

Unit-I

Chemical Energetics

Review of thermodynamics and the Laws of Thermodynamics.

Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature –

Kirchhoff's equation. Statement of Third Law of thermodynamics

Chemical Equilibrium Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between ΔG and ΔG o, Le Chatelier's principle. Relationships between Kp, Kc and Kx for reactions involving ideal gases

Unit- II

Ionic Equilibria

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

Section B: Organic Chemistry-II

Unit- III

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure. Aromatic hydrocarbons Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene

sulphonic acid. Reactions: (Case benzene): Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Craft's reaction (alkylation and acylation) (up to 4 carbons on benzene). Side chain oxidation of alkyl benzenes (up to 4 carbons on benzene).

Chemistry 66

Alkyl and Aryl Halides

Alkyl Halides (Up to 5 Carbons) Types of Nucleophilic Substitution (SN1, SN2 and SNi) reactions. Preparation: from alkenes and alcohols. Reactions: hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation. Williamson's ether synthesis: Elimination vs substitution. Aryl Halides Preparation: (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer &Gattermann reactions. Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH2/NH3 (or NaNH2/NH3).

Unit- IV

Alcohols, Phenols and Ethers (Up to 5 Carbons)

Alcohols: Preparation: Preparation of 1°, 2° and 3° alcohols: using Grignard reagent, Ester hydrolysis, Reduction of aldehydes and ketones, carboxylic acid and esters.

Reactions: With sodium, HX (Lucas test), esterification, oxidation (with PCC, alk. KMnO4, acidic dichromate, conc. HNO3). Oppeneauer oxidation Diols: (Up to 6 Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement.

Phenols: (Phenol case) Preparation: Cumene hydroperoxide method, from diazonium salts. Reactions: Electrophilic substitution: Nitration, halogenation and sulphonation. ReimerTiemann Reaction, Gattermann-Koch Reaction,

Ethers (aliphatic and aromatic): Cleavage of ethers with HI.

Aldehydes and ketones (aliphatic and aromatic): Formaldehyde, acetaldehyde, acetone and benzaldehyde Preparation: from acid chlorides and from nitriles.

Reactions – Reaction with HCN, ROH, NaHSO3, NH2-G derivatives. Iodoform test. Aldol Condensation, Cannizzaro's reaction, Benzoin condensation. Clemensen reduction and Wolff Kishner reduction.

Recommended Text Books:

- 1. Atkins P. W. & Paula, J. de, Elements of Physical Chemistry, Oxford University Press, 6th Ed., (2006).
- 2. Principles of Physical Chemistry, Puri, Sharma &Pathania, Vishal Publishing Co, 47th Edn., 2017.
- 3. K. L. Kapoor, Text Book of Physical Chemistry, Mac Grow Hill, 3rdEdn. 2017.
- 4. Morrison, R. N. & Boyd, R. N., Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

Generic Elective Paper II LAB Section A: Physical Chemistry

Thermochemistry (any three)

- 1. Determination of heat capacity of calorimeter for different volumes.
- 2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- 3. Determination of enthalpy of ionization of acetic acid.
- 4. Determination of integral enthalpy of solution of salts (KNO3, NH4Cl).
- 5. Determination of enthalpy of hydration of copper sulphate. 6. Study of the solubility of benzoic acid in water and determination of ΔH .

lonic equilibria pH measurements a) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter. b) Preparation of buffer solutions: • Sodium acetate-acetic acid • Ammonium chloride-ammonium hydroxide Measurement of the pH of buffer solutions and comparison of the values with theoretical values.

Section B: Organic Chemistry

- 1. Purification of organic compounds by crystallization (from water) and determination of melting.
- 2. Preparations, recrystallisation, determination of melting point and calculation of quantitative yields of the followings:
- (a) Bromination of Phenol/Aniline
- (b) Benzoylation of amines/phenols
- (c) Oxime and 2,4 dinitrophenylhydrazone of aldehyde/ketone

Reference Books 1. A.I. Vogel: Textbook of Practical Organic Chemistry, 5th edition, Prentice-Hall. 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009). 3. Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi (2011). 4. Ahluwalia, V.K., Dhingra, S. and Gulati A, College Practical Chemistry, University Press (2005).